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Abstract

Optimal control theory is considered as a methodology for pulse sequence design in NMR. It provides the flexibility for sys-

tematically imposing desirable constraints on spin system evolution and therefore has a wealth of applications. We have chosen an

elementary example to illustrate the capabilities of the optimal control formalism: broadband, constant phase excitation which

tolerates miscalibration of RF power and variations in RF homogeneity relevant for standard high-resolution probes. The chosen

design criteria were transformation of Iz ! Ix over resonance offsets of �20 kHz and RF variability of �5%, with a pulse length of

2ms. Simulations of the resulting pulse transform Iz ! 0:995Ix over the target ranges in resonance offset and RF variability. Ac-

ceptably uniform excitation is obtained over a much larger range of RF variability (�45%) than the strict design limits. The pulse

performs well in simulations that include homonuclear and heteronuclear J -couplings. Experimental spectra obtained from 100%
13C-labeled lysine show only minimal coupling effects, in excellent agreement with the simulations. By increasing pulse power and

reducing pulse length, we demonstrate experimental excitation of 1H over �32 kHz, with phase variations in the spectra <8� and
peak amplitudes >93% of maximum. Further improvements in broadband excitation by optimized pulses (BEBOP) may be possible

by applying more sophisticated implementations of the optimal control formalism.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The excitation pulse is indispensible in FT-NMR.

There is no signal without first transforming some of the

initial sample polarization to the transverse plane. Al-

though the high fields employed in modern spectrome-

ters increase sensitivity and spectral resolution, they also

require a concomitant increase in excitation bandwidth.

The workhorse of NMR pulses is probably the simple

hard pulse, which excites transverse magnetization
Iz ! 0:95Ixy over a bandwidth which is roughly a factor

of 2.5 times the applied RF amplitude. The phase of the

final magnetization is approximately linear as a function
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of resonance offset and can be easily corrected in 1D

spectra. The phase-correction procedure for multi-di-
mensional spectroscopy is less simple and becomes more

problematic for applications involving long pulse trains

and multiple coherence pathways. Moreover, the

bandwidth of the pulse is considerably reduced in the

presence of RF inhomogeneity or miscalibration. Of

additional relevance is the approach of 1 GHz spec-

troscopy, which sets a target bandwidth of �50 kHz for

excitation of the entire 200 ppm 13C chemical shift
range. The requisite 20–25 kHz (12.5–10 ls) hard pulse

exceeds the capabilities of most 13C probes. Broadband

excitation pulses which incorporate the added conve-

nience of constant-phase transverse magnetization are

therefore of more than passing interest. Robust pulses

which tolerate RF inhomogeneity or miscalibration are

also desirable.
reserved.

mail to: thomas.skinner@wright.edu


T.E. Skinner et al. / Journal of Magnetic Resonance 163 (2003) 8–15 9
Many methods exist for reducing the phase variation
of the excited magnetization as a function of resonance

offset [1–13]. As a benchmark for comparing pulse per-

formance to the standard hard pulse, consider a trans-

verse magnetization equal to at least 95% of the initial

equilibrium value with a phase roll of up to 4� over the
offset range. Typically, composite pulses satisfying this

standard achieve excitation bandwidths that are less

than �50% of the applied RF field. A 90x–180x–D pulse
sandwich, used for partial refocusing of transverse

magnetization, does no better for any value of the delay

D. Slightly better performance is obtained for excitation

pulses derived using the Floquet formalism [9]. A com-

monly used figure-of-merit (FOM), defined as the total

excitation bandwidth satisfying the benchmark divided

by the peak RF amplitude, is in the range 0.5–1.5 for

this group of pulses. The FOM decreases significantly if
the standard includes dual compensation for the effects

of resonance offset and RF inhomogeneity.

More efficient excitation is obtainable using phase-

alternated composite pulses [6], with a maximum FOM

of 2.5 matching the performance of a phase-corrected

hard pulse. Polychromatic pulses [10] have a low

FOM¼ 0.8 according to strict adherence to the bench-

mark, but this improves dramatically to FOM¼ 2.2 if a
phase roll of up to 6� is allowed. Although RF com-

pensation was not part of the design criteria, both pulses

have some serendipitous tolerance to RF inhomogene-

ity. However, no procedure was provided for incorpo-

rating tolerance to RF inhomogeneity directly in these

pulses, and the FOM also decreases if the RF is mis-

calibrated.

The broadband capabilities of adiabatic pulses have
been applied to develop methods for refocusing the

phase of the excited transverse magnetization

[7,8,11,12]. However, these techniques work well only

for ideal RF values, which, again, highlights the diffi-

culty of achieving tolerance to variations in RF and

resonance offset simultaneously. A clever solution to this

problem, with modest tolerance to RF inhomogeneity,

has been proposed [13] using hyperbolic secant pulses
[14–16] for excitation and refocusing (FOM¼�4.5).

However, this pulse shape characteristically operates at

very low RF values for a significant fraction of the pulse.

The resulting ABSTRUSE sequence is 12ms long, and

even a pulse half this length may be subject to the effects

of J -modulation during the pulse. Relaxation is also an

important issue during application of long pulses.

Dual compensation for RF and chemical shift vari-
ation, with minimal J -modulation and relaxation during

the pulse, is thus a difficult design problem. A systematic

procedure for achieving all these goals simultaneously is

the topic of this paper. It provides the possibility for

significant improvements in pulse performance. We

present results of our initial attempts using optimal

control theory [17–20] to design, for use in high-reso-
lution NMR, broadband 90� pulses which excite trans-
verse magnetization of nearly constant phase with

tolerance to RF miscalibration and inhomogeneity. We

first provide an overview of the method, sufficient to

give insight into the optimization procedure. Details of

the basic theory relevant for NMR of simple spin sys-

tems (ignoring coupling effects) can be found in [21–23],

applied to narrowband selective excitation for imaging

applications. An alternative to optimal control for
simple spin systems can be found in [24]. However, this

method is not easily extended to more general systems

involving coupled spins, and our long-term goals en-

compass a variety of more general applications which

require the flexibility and extensibility found in optimal

control theory. The overview material is followed by

discussion of a 2ms pulse obtained using the procedure,

where we demonstrate its successful performance over a
bandwidth of 40 kHz. The pulse performs well in the

presence of J -coupling and tolerates RF miscalibration

of up to 4 dB (�45%). Significantly higher bandwidths

and/or shorter pulses appear to be attainable. Strategies

for obtaining further improvements in pulse perfor-

mance are considered in Section 4.
2. Theory

2.1. Classical Euler–Lagrange formalism

Optimal control theory is a generalization (e.g., [20])

of the classical Euler–Lagrange formalism. The goal is

to find the curve or trajectory xðtÞ which optimizes the

value of the functional

J ½x	 ¼
Z t1

t0

L½t; xðtÞ; uðtÞ	dt ð1Þ

over the interval ½t0; t1	. In classical mechanics, u ¼ dx=dt,
xðt0Þ and xðt1Þ are fixed, and the curves xðtÞ and uðtÞ are
required to be continuous. The necessary condition that

such a curve be an optimizing curve is that the variation

dJ at all points of the path be equal to zero, which results

in the familiar Euler–Lagrange differential equation for

the Lagrangian L [25]. Additional constraints which can
be imposed on points of the optimizing curve, of the form

gðxÞ ¼ c, are included in the formalism by introducing

Lagrange multipliers kj for each constraint equation gj,
which transforms the Euler–Lagrange equation for L to

a similar one for the function

h ¼ L�
X
j

kjgj: ð2Þ
2.2. Optimal control theory in NMR

For optimal control of a system of non-interacting

spins in NMR, the goal is to find the trajectory for the



Fig. 1. Optimization scheme. For a given RF sequence xeðtÞ, the initial
state Mðt0Þ evolves to some final state MðtpÞ through a sequence of

intermediate states, shown schematically as the solid line connecting

Mðt0Þ and MðtpÞ. Similarly, the desired final target state F, which is

equal to the Lagrange multiplier term kðtpÞ according to Eqs. (8) and

(11), evolves backwards in time to some initial state kðt0Þ. The separate
paths for MðtÞ and kðtÞ become equal for the optimized RF sequence

xoptðtÞ that drives Mðt0Þ to kðtpÞ ¼ F. At each time, a comparison of

the two paths via MðtÞ  kðtÞ gives the proportional adjustment to

make in each component of the control field xeðtÞ to bring the two

paths closer together.
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magnetization vector MðtÞ that optimizes a suitably
chosen cost functional J . In units of angular frequency

(rad/s), the effective RF field in the rotating frame is

xe ¼ x1ðtÞ½cos/ðtÞx̂xþ sin/ðtÞŷy	 þ DxðtÞẑz; ð3Þ
which encompasses any desired modulation of the am-

plitude x1, phase /, and frequency offset Dx of the

pulse. The possible trajectories MðtÞ are constrained to

satisfy the Bloch equation

_MM ¼ xe M ; ð4Þ
which therefore introduces three Lagrange multipliers

kj, as discussed in the previous section. The three con-

straint functions gj in Eq. (2) are then simply the com-

ponents of the vector

g ¼ xe M: ð5Þ
Since xeðtÞ controls the evolution of MðtÞ, the goal of

finding the optimum trajectory is the same as finding the
optimal RF sequence to apply to the sample. Given an

initial state Mðt0Þ and a desired final or target state F at

the end of the pulse, we want to optimize

J ½M	 ¼
Z tp

t0

L½t;MðtÞ;xeðtÞ	dt þ U½MðtpÞ	 ð6Þ

over the interval ½t0; tp	. Compared to Eq. (1), we now

have u ¼ xe. Typically, the ‘‘running’’ cost function L is

chosen with no explicit dependence on M or t. In ad-
dition, a final cost term UðMÞ evaluated at the end of

the pulse is generally included.

A more significant generalization for the develop-

ment of optimal control theory is the removal of the

restriction that u be continuous. For practical NMR

applications, the RF amplitude, phase, and/or frequency

must be allowed to make discontinuous jumps. Inclu-

sion of this more general class of piecewise continuous
functions merely constrains the proof of the theorem

[17] defining the necessary conditions for an optimal

solution, as noted in [20]. The end result is similar to the

classical case. Including the Bloch equation constraint

on M, the requirement dJ ¼ 0 implies

_kk ¼ �oh=oM ð7Þ
with initial condition

kðtpÞ ¼ oU=oM ð8Þ
for the time evolution of k, and

ohðtÞ=oxeðtÞ ¼ 0; ð9Þ
at all points on the optimal trajectory, which provides a

means for adjusting the RF controls. By analogy with

the Hamiltonian formalism of classical mechanics, M
and k are conjugate variables, since

_MM ¼ xe M

¼ oh=ok ð10Þ

according to Eqs. (2) and (5).
2.2.1. Application to excitation

For an excitation pulse, the initial state Mðt0Þ ¼ ẑz
and the target state F ¼ x̂x. For the preliminary appli-

cation of optimal control theory reported here, the

running cost, given by the function L in Eq. (6), was set

equal to zero. We then find the optimization of the final

cost J ¼ U½MðtpÞ	 has an especially simple geometrical

interpretation for the particular choice

U ¼ MðtpÞ � F; ð11Þ
which quantifies the degree to which MðtpÞ ¼ F. In this

case, Eq. (2) becomes

h ¼ k � ðxe MÞ ¼ xe � ðM  kÞ: ð12Þ
Eq. (8) gives

kðtpÞ ¼ F; ð13Þ
and the conditions that must be satisfied at each time for

the cost to be maximized are

_MM ¼ xe M ; Mðt0Þ ¼ ẑz; ð14Þ

_kk ¼ xe  k; kðtpÞ ¼ x̂x; ð15Þ

oh
oxe

¼ M  k ¼ 0: ð16Þ

As illustrated in Fig. 1, a sequence which trans-

forms Mðt0Þ forward in time to the desired target state
F ¼ x̂x therefore transforms kðtpÞ ¼ F backwards in

time to Mðt0Þ. For the optimal pulse, we then have

MoptðtÞ ¼ koptðtÞ, which satisfies the stationary condi-

tion given by Eq. (16). For a non-optimal pulse,

ðM  kÞ at each time point of the two trajectories gives

the proportional adjustment to make in the control

field xeðtÞ.
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Herein lies the power and efficiency of optimal con-
trol theory. For a m-component control field digitized in

n time increments, the final cost U to be optimized is a

function of N ¼ mn variables. Many methods exist for

finding an extremum (minimum or maximum) of an

N -dimensional function (see, for example, [26]). Typi-

cally, they utilize various strategies for stepping down-

hill (uphill) until a minimum (maximum) of the function

is reached. The extremum found might only be a local
rather than global extremum, but this limitation is im-

posed more by the multi-dimensional nature of the

function than the optimization procedure. A general

function, with no closed form analytical expression for

calculating the gradient (i.e., the direction of steepest

descent), can require on the order of N evaluations to

take a single effective step towards the extremum. Each

evaluation of the cost function we want to optimize re-
quires, in turn, a time evolution of the initial state over

the sequence of control fields. By contrast, optimal

control theory requires only the two evolutions shown in

Fig. 1 to determine the best direction to step and im-

prove the cost.

Including the Bloch equation as a constraint in the

optimization has provided, for arbitrary RF sequence

and cost function, a quantitative measure of the differ-
ence between the evolution of the initial state and kðtpÞ.
As noted in Eq. (8), kðtpÞ is directly related to the final

cost and equals the target state for the particular choice

of U in Eq. (11). One need not make N samples of the

parameter space to determine how to drive the initial

state to the target state. Depending on the length of the

RF sequence, N can easily be on the order of 1000 or

more, especially for shaped pulses. Optimal control
theory therefore provides an enormous efficiency gain

compared to traditional procedures and opens the door

to a host of problems that otherwise might be too

computationally intensive to be tractable.

2.2.2. Numerical algorithm

The procedure for optimizing the cost can be incor-

porated in the following algorithm:
(i) Choose an initial RF sequence x

ð0Þ
e .

(ii) Evolve M forward in time from the initial state ẑz.
(iii) Evolve k backwards in time from the target state

x̂x.
(iv) x

ðkþ1Þ
e ðtÞ ! x

ðkÞ
e ðtÞ þ �½MðtÞ  kðtÞ	

(v) Repeat steps (ii)–(iv) until a desired convergence

of U is reached.

The Bloch equation represents an instantaneous ro-
tation about xeðtÞ. Rotations preserve both the length of

vectors and the angles between vectors, so step (iii) can

be replaced by

(iii0) Calculate MðtpÞ  kðtpÞ and evolve it backwards

in time

which eliminates repeated calculation of ðM  kÞ at

each t in step (iv).
2.2.3. Broadband excitation

The ideal cost, MxðtpÞ ¼ 1, which is necessary to

satisfy Eq. (16) and terminate the algorithm, can not be

achieved by an optimal sequence at all resonance offsets

simultaneously. For a range of chemical shift offsets,

and also a range of non-ideal RF fields, the average cost

hMxðtpÞi < 1. Therefore, the value of M  k is calcu-

lated for each combination of resonance offset and RF

field, and the average of all these values, hM  ki, is
used in step (iii0), since it can converge to zero and ter-

minate the algorithm. Effectively, the same result is

obtained in [21,22], which start with the Bloch equation

in matrix form [27] and derive equations equivalent to

Eqs. (14) and (15) using an extended magnetization

vector composed of M for each resonance offset. In the

present case, the range of RF variation would also be

included. The stationary condition in this extended
matrix formulation can then be shown to be a sum of

Eq. (16) over the offsets. Although the matrix form is

entirely equivalent to the vector equations presented

here, the straightforward geometric interpretation of

Eqs. (14)–(16) and Fig. 1 is less evident in [21,22].

There is also no guarantee that the cost is optimized

by a sequence satisfying the conditions of Eqs. (14)–(16).

They are only the necessary conditions. However, since
the maximum possible cost for an ideal or perfect

broadband excitation pulse is equal to one, the degree to

which the cost approaches this value is a practical

measure for the utility of its associated RF sequence. We

therefore employ the term ‘‘optimal’’ to mean a se-

quence which satisfies the necessary conditions with a

cost that is useful for NMR applications. Proving that it

is the best of all possible sequences becomes less im-
portant from an applications standpoint as the cost

approaches the ideal value.

Since frequency modulation is equivalent to phase

modulation, with DxðtÞ ¼ d/ðtÞ=dt, we considered only

amplitude and phase modulation in the current imple-

mentation of the algorithm. The value of Dx in Eq. (3) is

then time-independent, and gives the chemical shift of

the irradiated spin. A sequence of random ðx; yÞ ampli-
tudes was generated to initiate the algorithm in step (i).

The two RF control fields ðx1Þx and ðx1Þy were digitized
in 0.5 ls steps over the 2ms pulse length. RF inhomo-

geneity in the amplitude x1ðtÞ was incorporated by

scaling the ideal RF amplitude x0
1ðtÞ according to

x1ðtÞ ¼ ax0
1ðtÞ for constant factors a.

Using steps (ii) and (iii0), the average hM  ki was

calculated over a combination of 81 resonance offsets in
the range �20 kHz, incremented by 500Hz, and 5 RF

scalings given by a ¼ ð0:95; 0:975; 1:0; 1:025; 1:05Þ. The
RF values were weighted according to a Gaussian dis-

tribution exp½�ð1� aÞ2=ð2r2Þ	, with r ¼ 0:042 giving a

full width at half-maximum (FWHM) of 0.1, or 10% of

the nominal RF value. The resonance offsets were

weighted equally.
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As noted, only the transverse or ðx; yÞ components of
xe were modified in step (iv). This effectively ignores the

information contained in the z component of M  k for

optimizing the cost. The stepsize, �, can be chosen suf-

ficiently small to ensure the solution always tends

steadily towards the optimum, but this can be overly

time-consuming, involving many unnecessarily small

steps during some iterations. Instead, the largest step

providing improvement in the cost was determined at
each iteration by bracketing the optimal step size among

three values and using a simple 1D line minimization

routine [26]. The efficiency of the optimization was

further enhanced using a conjugate gradient method to

determine the step direction. The maximum amplitude

of the RF controls was constrained indirectly by the

fixed pulse length, with tp ¼ 2ms resulting in an opti-

mized pulse amplitude B1ðtÞ ¼ x1ðtÞ=ð2pÞ less than
20 kHz. Our cost function, with a total of 8000 inde-

pendent control parameters to be optimized over 405

possible combinations of RF scale factor and resonance

offset, would present a formidable challenge for the

traditional optimization methods mentioned earlier.
3. Results and discussion

The optimal control algorithm, implemented ac-

cording to the design criteria of the previous section,

converged to the excitation pulse displayed in Fig. 2.

The algorithm requires less than 30min of CPU time to

generate the pulse on a 1.5GHz Pentium IV processor.
Fig. 2. Broadband excitation pulse. The deceptively ‘‘random’’ ap-

pearance in pulse amplitude (upper panel) and phase (lower panel) as a

function of time efficiently choreographs the transformation Iz ! Ix
over a 40 kHz range of resonance offsets with moderate tolerance to

RF miscalibration (see Fig. 3). The pulse length was fixed at 2ms,

resulting in a maximum RF amplitude for the pulse of 17.5 kHz. A

2ms pulse of constant 8.5 kHz RF amplitude would have the same

power requirements as the pulse shown.
The seemingly random appearance of the pulse belies its
function: each increment of the pulse delivers the precise

RF amplitude and phase required to maximize the final

x magnetization over the target ranges in RF inhomo-

geneity and resonance offset for the given (random)

initial RF waveform. The inverse transformation Ix ! Iz
can be obtained by applying the time-reversed pulse,

with each phase incremented by 180�.
The theoretical performance of the pulse, assuming

simple Bloch equation evolution of the irradiated spins

(as in the optimization procedure), is illustrated in Fig.

3. Contours of x magnetization, Mx, are plotted in the

upper panel as functions of resonance offset and RF

inhomogeneity. The phase of the excited magnetization

is shown similarly in the lower panel. Over a �5% var-

iation in the nominal RF delivered by the coil and res-

onance offsets of �20 kHz, the excited magnetization Mx

is at least 99.5% of the initial z magnetization, M0.
Fig. 3. Simulated performance of the optimized pulse of Fig. 2.

Starting with initial z magnetization M0, the magnitude Mx (upper

panel) and phase / (lower panel) of the excited magnetization is

plotted as a function of resonance offset and RF field B1, represented

as a fraction of the nominal field B0
1. Contour lines displayed forMx are

[0.995, 0.99, 0.96], and those for the phase of the excited magnetiztion

are [4�, 8�, 16�]. Contours similar to those shown above are obtained

for homonuclear and heteronuclear scalar-coupled systems, as dis-

cussed in the text. In comparison, a hard 90� pulse (‘‘peak’’ RF am-

plitude equal to 17.5 kHz, as above), after phase correction of the

spectrum, gives Mx > 0:995M0 over offsets of only �6 kHz for

0:956B1=B0
1 6 1:05 and �12 kHz for B1=B0

1 ¼ 1.



Fig. 4. 800MHz 13C spectrum of 100% 13C-labeled lysine. The spec-

trum was acquired after irradiation of the sample with the pulse shown

in Fig. 2. The delay between the 90� pulse and the first data point of the

FID was set to the dwell time in order to obtain the pure phase be-

havior of the excitation pulse. The acquired spectrum is an average of

64 scans, exponentially apodized and zeroth order phase corrected. No

first order phase correction was applied. The phase of the spectrum is

uniform over the full 13C chemical shift range, and effects due to C–C

or H–C couplings during the 2ms application of the pulse are minimal.

Fig. 5. Excitation profiles for the residual HDO signal in a sample of

99.9% D2O are displayed as a function of resonance offset and RF

power levels applied to the sample for a 4ms pulse obtained by scaling

all RF values in the optimized pulse of Fig. 2 by 1/2. The pulse has a

maximum RF amplitude of 8774Hz in the calibrated case (0 dB), with

RF power levels set to �1 and �2 dB relative to the calibrated pulse.

The broadband excitation pulse is relatively insensitive to pulse mis-

calibration over the 4 dB range, corresponding to a �45% variability in

the RF calibration.
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Although the optimization was not performed outside
these stated ranges, nonetheless Mx=M0 >� 99% over a

�10% variation in RF, and the phase of the final mag-

netization is less than �8� over this larger RF range,

operating over the same 40 kHz bandwidth.

The FOM of 2.3 for this pulse is comparable to the

best values of the previous broadband excitation pulses,

with the exception of the 12ms ABSTRUSE pulse,

which gives a much higher FOM at the price of in-
creased vulnerability to J -coupling and relaxation ef-

fects. The FOM, however, provides no measure for the

uniformity of the performance as a function of changing

RF calibration or homogeneity. The optimal control

algorithm has produced exceptional results over the

targeted parameter range (�20 kHz resonance offset,

�5% RF inhomogeneity). Since the other pulses were

designed with only resonance offset performance as a
consideration, a more illuminating comparison might be

obtained by applying optimal control theory to the de-

sign of broadband excitation with only ideal RF values

used in the algorithm. In such a case, simulations (not

shown) of the resulting pulse performance show nearly

perfect excitation, Iz ! 0:999Ix, over a bandwidth of

100 kHz with FOM¼ 5.2. This is more than double the

value for Fig. 3, and requires only a modest �10% in-
crease in peak RF amplitude. As expected, however, the

tolerance to RF variability is poorer, with Mx dropping

to 90% of M0 at a �5% change in the nominal RF de-

livered by the coil over resonance offsets of �50 kHz.

Nonetheless, this example illustrates there is consider-

able scope for improving pulse performance without

increasing peak power and also emphasizes the FOM as

defined is a relatively limited measure of performance.
The longer an excitation pulse is, the more important

the potential effects of J -coupling during the pulse, and

2ms is sufficiently long that this could be a significant

concern. Separate simulations of a heteronuclear 2-spin

system (J ¼ 150Hz) and a homonuclear system

(J ¼ 55Hz) produced results equivalent to those shown

in Fig. 3 for an uncoupled system. All systems were

simulated starting with initial z magnetization (the total
magnetization of both spins in the homonuclear case).

Experimental confirmation of the utility of the pulse for

realistic applications involving excitation of coupled

spin systems is provided in Fig. 4. The 13C spectrum of

�20mM 100% 13C-labeled lysine exhibits only minimal

phase distortions, either from resonance offset effects,

C–C couplings, or H–C couplings. On the 800MHz

spectrometer employed, the 40 kHz bandwidth of the
pulse is sufficient to excite the full 200 ppm (40.24 kHz)
13C chemical shift range. In general, the broadband

capabilities of relatively long excitation pulses have to

be examined carefully to determine whether they are

applicable to both coupled and uncoupled systems.

To verify the stability of the pulse with respect to RF-

miscalibration, as well as its scalability, a series of



Fig. 6. Excitation offset profile of a 1.25ms broadband excitation

pulse, obtained by scaling the pulse of Fig. 2 to the maximum RF of

28.1 kHz available on the system hardware. The amplitude of the ex-

cited magnetization is >93% over the complete bandwidth of 64 kHz

and phase distortions are generally less than 8�.
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excitation offset profiles were acquired with power levels

(dB) set to )2, )1, 0, 1, and 2 dB relative to the cali-

brated excitation pulse. The pulse was scaled by a factor

of 2, doubling the pulse length and halving the RF

amplitude. Offset profiles were thus recorded using a

4ms version of the excitation pulse with a maximum RF

amplitude of 8774Hz, giving a bandwidth of �10 kHz.

In Fig. 5, the optimized excitation bandwidth is achieved
for the whole 4 dB range (�45%), with an excitation

amplitude for all offsets and power levels >83% of the

maximum value within the range and a maximum phase

distortion of less than 17�.
The broadband excitation pulse was implemented on

a Bruker DMX 800 spectrometer equipped with modern

SGU units for RF-control and linearized amplifiers.

Initial trials were performed on a DMX 500 spectrom-
eter with non-linearized amplifiers which resulted in re-

sonable excitation profiles but a significant improvement

was evident on the DMX 800 spectrometer with a more

modern console and linearized amplifiers. We therefore

highly recommend the use of amplitude- and phase-

linearized amplifiers in order to achieve best results.

Finally, scaling the RF power to the maximum al-

lowed by the system hardware produced the result
shown in Fig. 6. The pulse length is 1.25ms and the

maximum RF amplitude is 28.1 kHz, giving a band-

width of 64 kHz. Values for the amplitude and phase of

the excited magnetization over the bandwidth of the

pulse are consistent with the simulations of Fig. 3. In

this case the pulse was digitized in very short steps of

0.3125 ls, but the handling of the waveform generator

on the DMX 800 spectrometer still gives excellent results
with the excitation amplitude generally higher than 93%

and phase distortions less than 8�.
4. Conclusion

Optimal control theory provides a systematic and

flexible formalism that can be readily applied to pulse
sequence design. To illustrate the utility of the procedure,

we have presented a 2ms implementation of broadband

excitation by optimized pulses (BEBOP), that performs

well in the presence of J -coupling and is tolerant to the
range of RF miscalibration typical in high-resolution
NMR. For a peak RF amplitude of 17.5 kHz, it produces

final magnetization of approximately uniform phase

over a resonance offset range of 40 kHz with a tolerance

of �45% to RF miscalibration. Over the targeted range

of RF variability, the phase is <4�. Pulse performance at

both lower and higher power has also been demon-

strated, giving excitation bandwidths of 20 and 64 kHz,

respectively. We also mentioned in passing a 2ms pulse
designed without consideration for RF tolerance that

achieves an excitation bandwidth of 100 kHz for the ideal

RF values used in its design (peak RF¼ 19.4 kHz).

BEBOP was obtained using a particularly straight-

forward implementation of optimal control theory, and

as such, merely scratches the surface of what is possible.

The optimization produces pulses of exceptional quality

for the targeted ranges of resonance offset and RF vari-
ability. Testing the limits of pulse performance is the next

order of business. It would be useful, for example, to

obtain shorter pulses in order to minimize relaxation

effects. Maximizing excitation bandwidth as a function of

peak RF amplitude is important, and the limits of tol-

erance to RF inhomogeneity need to be explored. Design

of plane rotation pulses (universal rotors) is also a logical

next step. All these goals should be pursued without in-
creasing RF amplitudes above the limits available for 13C

spectroscopy. One possibility is to assign a running cost

L ¼ bx2
eðtÞ in Eq. (6), with the weight b determining the

penalty for larger RF values. Other expressions for the

final cost U are also possible. Another strategy would be

to clip the RF amplitude at a desired maximum value and

force the optimal control algorithm to search for another

solution whenever the amplitude exceeds this limit. While
these possibilities are being investigated, the 2ms BE-

BOP can be downloaded in the interim from http://

www.org.chemie.tu-muenchen.de/people/bulu.
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